66读书

字:
关灯 护眼
66读书 > 印度神话 > 告密者的下场

告密者的下场

66读书 www.66dushu.com,最快更新印度神话!

从前有座山,叫巴里赫德,他一个当一座山,十分的爽。

哎,想不到吧。

这个山里面有树林,有庙,有这个山里灵活的狗。山上有棵树,这棵树不叫高树,因为这个梗太老了。这棵树的形状有些奇特,大概就长这个样子。

import torch

from torch import nn

import torch.nn.functional as F

import os

import tensorboardX

from torch.utils.data import Dataset

from torch.utils.data import DataLoader

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class VGGBaseSimpleS2(nn.Module):

def __init__(self):

super(VGGBaseSimpleS2, self).__init__()

self.conv1 = nn.Sequential(

nn.Conv2d(1, 12, kernel_size=3, stride=1, padding=1),

#nn.BatchNorm2d(16),

nn.ReLU()

# 6*6

self.max_pooling1 = nn.MaxPool2d(kernel_size=2, stride=1)

# 5*5

self.conv2_1 = nn.Sequential(

nn.Conv2d(12, 24, kernel_size=3, stride=1, padding=1),

nn.ReLU()

self.max_pooling2_1 = nn.MaxPool2d(kernel_size=2, stride=1)

# 4*4

self.conv2_2 = nn.Sequential(

nn.Conv2d(24, 24, kernel_size=3, stride=1, padding=1),

nn.ReLU()

self.max_pooling2 = nn.MaxPool2d(kernel_size=2, stride=2)

# 2*2

# 2*2

self.fc = nn.Linear(24*2*2, 2)

def forward(self, x):

batchsize = x.size(0)

out = self.conv1(x)

out = self.max_pooling1(out)

out = self.conv2_1(out)

out = self.conv2_2(out)

out = self.max_pooling2(out)

out = out.view(batchsize, -1)

out = self.fc(out)

out = F.log_softmax(out, dim=1)

return out

class TrainingDataSet(Dataset):

def __init__(self):

super(TrainingDataSet, self).__init__()

self.data_dict_X = X_train

self.data_dict_y = y_train

def __getitem__(self, index):

t = self.data_dict_X[index, 0:36]

t = torch.tensor(t).view(6, 6)

return t, self.data_dict_y[index]

def __len__(self):

return len(self.data_dict_y)

class TestDataSet(Dataset):

def __init__(self):

super(TestDataSet, self).__init__()

self.data_dict_X = X_validate

self.data_dict_y = y_validate

def __getitem__(self, index):

t = self.data_dict_X[index, 0:36]

t = torch.tensor(t).view(6, 6)

return t, self.data_dict_y[index]

def __len__(self):

return len(self.data_dict_y)

def cnn_classification():

batch_size = 256

trainDataLoader = DataLoader(TrainingDataSet(), batch_size=batch_size, shuffle=False)

testDataLoader = DataLoader(TestDataSet(), batch_size=batch_size, shuffle=False)

epoch_num = 200

#lr = 0.001

lr = 0.001

net = VGGBaseSimpleS2().to(device)

print(net)

# loss

loss_func = nn.CrossEntropyLoss()

# optimizer

optimizer = torch.optim.Adam(net.parameters(), lr=lr)

# optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)

if not os.path.exists(“logCNN“):

os.mkdir(“logCNN“)

writer = tensorboardX.SummaryWriter(“logCNN“)

for epoch in range(epoch_num):

train_sum_loss = 0

train_sum_correct = 0

train_sum_fp = 0

train_sum_fn = 0

train_sum_tp = 0

train_sum_tn = 0

for i, data in enumerate(trainDataLoader):

net.train()

inputs, labels = data

inputs = inputs.unsqueeze(1).to(torch.float32)

labels = labels.type(torch.LongTensor)

inputs, labels = inputs.to(device), labels.to(device)

outputs = net(inputs)

loss = loss_func(outputs, labels)

optimizer.zero_grad()

loss.backward()

optimizer.step()

_, pred = torch.max(outputs.data, dim=1)

acc = pred.eq(labels.data).cpu().sum()

one = torch.ones_like(labels)

zero = torch.zeros_like(labels)

tn = ((labels == zero) * (pred == zero)).sum()

tp = ((labels == one) * (pred == one)).sum()

fp = ((labels == zero) * (pred == one)).sum()

fn = ((labels == one) * (pred == zero)).sum()

train_sum_fn += fn.item()

train_sum_fp += fp.item()

train_sum_tn += tn.item()

train_sum_tp += tp.item()

train_sum_loss += loss.item()

train_sum_correct += acc.item()

train_loss = train_sum_loss * 1.0 / len(trainDataLoader)

train_correct = train_sum_correct * 1.0 / len(trainDataLoader) / batch_size

train_precision = train_sum_tp * 1.0 / (train_sum_fp + train_sum_tp)

train_recall = train_sum_tp * 1.0 / (train_sum_fn + train_sum_tp)

writer.add_scalar(“train loss“, train_loss, global_step=epoch)

writer.add_scalar(“train correct“,

train_correct, global_step=epoch)

writer.add_scalar(“train precision“,

train_precision, global_step=epoch)

writer.add_scalar(“train recall“, train_recall, global_step=epoch)

if not os.path.exists(“models_aug_CNN“):

os.mkdir(“models_aug_CNN“)

torch.save(net.state_dict(), “models_aug_CNN/{}.pth“.format(epoch + 1))

scheduler.step()

sum_loss = 0

sum_correct = 0

test_sum_fp = 0

test_sum_fn = 0

test_sum_tp = 0

test_sum_tn = 0

for i, data in enumerate(testDataLoader):

net.eval()

inputs, labels = data

inputs = inputs.unsqueeze(1).to(torch.float32)

labels = labels.type(torch.LongTensor)

inputs, labels = inputs.to(device), labels.to(device)

outputs = net(inputs)

loss = loss_func(outputs, labels)

_, pred = torch.max(outputs.data, dim=1)

acc = pred.eq(labels.data).cpu().sum()

one = torch.ones_like(labels)

zero = torch.zeros_like(labels)

tn = ((labels == zero) * (pred == zero)).sum()

tp = ((labels == one) * (pred == one)).sum()

fp = ((labels == zero) * (pred == one)).sum()

fn = ((labels == one) * (pred == zero)).sum()

test_sum_fn += fn.item()

test_sum_fp += fp.item()

test_sum_tn += tn.item()

test_sum_tp += tp.item()

sum_loss += loss.item()

sum_correct += acc.item()

test_precision = test_sum_tp * 1.0 / (test_sum_fp + test_sum_tp)

test_recall = test_sum_tp * 1.0 / (test_sum_fn + test_sum_tp)

test_loss = sum_loss * 1.0 / len(testDataLoader)

test_correct = sum_correct * 1.0 / len(testDataLoader) / batch_size

writer.add_scalar(“test loss“, test_loss, global_step=epoch + 1)

writer.add_scalar(“test correct“, test_correct, global_step=epoch + 1)

writer.add_scalar

(“test precision“, test_precision, global_step=epoch + 1)

writer.add_scala

r(“test recall“, test_recall, global_step=epoch + 1)

print(“epoch is“, epoch, “train loss“, train_loss, “train correct“, train_correct, “test loss is “,

test_loss, “test correct is: “, test_correct, “train_precision: “, train_precision, “test_precision: “,

test_precision, “train_recall: “, train_recall, “test_recall: “, test_recall)

writer.close()

可以说非常之高大粗壮,也给山里面人带来了很多不便,为了开发山里面的土地,或者给山里面阳光,村民决定砍伐这棵树。他们砍了整整一天,给树砍了,一股七彩的光芒就飞进了树林。村民就非常爽,晚上就抱着他们女朋友进入了甜蜜的梦乡。

可第二天他们发现树又长回来了,这次不是python这次是特么java。他们又砍树,但第二天又长出来了,这树C,C++,C#,JavaScript,Perl,PHP,Delhi Pascal,Go,SQL,Matlab,Scratch一样一个。具体是什么我就不写了我怕你们打我。

有一个精通电脑的长老提出来了,很久以前一个叫莱茵的男人犯了病,惹怒了达摩和迦叶波。非常难受,被变成了狮子。

这个sb树肯定是这sb莱茵捣的鬼。

于是长老就π人在晚上守夜。果然他们看见了莱茵偷偷嵌入呸潜入他们树墩下,他们发现这个树没有砍干净还剩了一个

#include〈studio.h〉

int main()

莱茵用这个舌头一舔,这树就分分钟长成了参天大树。

这sb守夜人也不组织而是禀报给了长老。长老一看十分生气。下令给这个#include〈studio.h〉 int main()

也连根拔起烧了。

之后狮子发现没有树可以舔了十分难受,有一天他正在路上走着,发现了一根女人叫sb蓄渴衅,他对这个女人说:“sb蓄渴衅,我分分钟就能吃了你,但是我不会吃你,现在我还要给你名贵的药草,让你当药科大学公派留学生,你能不能帮我弄死你们sb长老。”

sb蓄渴衅一听wc,非常爽。就成了莱茵的卧底当了恨国党。天天泄露长老的机密。

长老也发现不对劲,就下令说:“我们之中出来了一个告密者,恨国党,历史虚无主义者,我已经知道它的名字了,我奉劝它能够改邪归正在明天带着莱茵的头颅来见我,要么它只有死路一条。”

蓄渴衅十分慌张,它找到莱茵商量对策,莱茵说:“非常简单,我给你一个别的狮子的头颅。”

蓄渴衅照做了,拿着别的狮子的头颅见了长老,长老一见sb蓄渴衅,酷驰一摆拳,呱嗒一个刺拳,框汤一个鞭腿给它打成了sb,不,本来就是sb。给它皮扒了十八层,骨灰扬到水沟里头。看着蓄渴衅痛苦地死去,长老非常地爽,然后揪出来了在丛林里潜伏的莱茵,夸差,咣当,酷驰一波操作给他也打成了渣渣。

最后,他大吼“看清楚没有,这就是sb告密者的下场。”

先别急着幸福生活,现在这个侯丰文又出来了,跟大家再瞎说几句。

有人说爱国是种美德,是种修养。我觉得是特么屁的美德修养,你特么身为一个人类,你也算是个人了,你国都不爱你算特么什么人类。我都想问不爱国的这些畜牲们一句为什么,到底为什么,有人说物种多样性呀遗传多样性,这特么解释不通啊,妈的物种多样性也特么不是这个地方多样吧,我都不太能把这种东西看成一种生物。

在我看来,爱国已经是最廉价,最基本的品质,一个人可以尖酸刻薄,可以不自律颓废,可以一事无成,可以贪婪吝啬,都不能用你的语言和身体攻击那个给我们稳定幸福生活,养育我们长大的祖国。

对于这类恨国的粪便蛆虫(对不起侮辱粪便蛆虫了)在英雄们冲锋陷阵时,它们肆意嘲讽。在英雄们为国捐躯时,它们恶毒诅咒。它们嘤嘤狗吠自以为不朽,用放屁一般的言语,歪曲事实,虚无历史,辱骂先烈。

我为同这种人生在一片空气里而耻辱而羞愧!

这篇文章不好意思,没有凝华主旨和幸福生活。我要让我的每个读者看到!面对这些蛆虫粪便,我们没必要冷静,我们没必要克制。只有卸掉他们肮脏的头颅,才是对高尚英雄真正地告慰。

『加入书签,方便阅读』