66读书

字:
关灯 护眼
66读书 > 平行世界:01号末日 > 第五章 给予帮助

第五章 给予帮助

66读书 www.66dushu.com,最快更新平行世界:01号末日!

“你...确定?”

林川虽然已经确定了她是救援队的,但还是假装疑惑的问道。

上官雯并未多说而是·拿出一个证件。

姓名:上官雯

年龄:21

职位:中国救援队2号分队队长

“信吗?”

“好好,我信。”

林川无奈道。

“但我不准备去避难所,但能给你一些帮助。”

林川将那1级的笔记本给了上官雯,并道。

“这个笔记本可以当作服务器,网的密码是1234.”

“还有丧尸死后脑中会有一种固体,我叫它晶石,它可以当作能源,一个可以用1年。”这是林川之前捣鼓出的。

“这...那谢谢了,还有为什么帮我?”

“因为我也是中国人”

“原来是同胞啊!那谢谢了,还有你叫啥?”

“嗯...就叫我川吧。”

因为林川不知道她是好是坏,所以就告诉她名,不告诉姓。

“川...好名子,那回头见。”

然后上官雯就带这幸存者离去。

林川也开车回到基地。

这时有个黑影看向林川的方向露出诡异的笑容。

“看来我不能出去了,已经有人盯上我了。得让机器人代替我去了”

“看来还得造一个六足机器人和一个卫星,动手吧。

给大家科普一下,六足机器人又叫蜘蛛机器人,是多足机器人的一种。仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界。在自然界和人类社会中存在一些人类无法到达的地方和可能危及人类生命的特殊场合。如行星表面、灾难发生矿井、防灾救援和反恐斗争等,对这些危险环境进行不断地探索和研究,寻求一条解决问题的可行途径成为科学技术发展和人类社会进步的需要。地形不规则和崎岖不平是这些环境的共同特点。从而使轮式机器人和履带式机器人的应用受到限制。以往的研究表明轮式移动方式在相对平坦的地形上行驶时,具有相当的优势运动速度迅速、平稳,结构和控制也较简单,但在不平地面上行驶时,能耗将大大增加,而在松软地面或严重崎岖不平的地形上,车轮的作用也将严重丧失移动效率大大降低。为了改善轮子对松软地面和不平地面的适应能力,履带式移动方式应运而生但履带式机器人在不平地面上的机动性仍然很差行驶时机身晃动严重。与轮式、履带式移动机器人相比在崎岖不平的路面步行机器人具有独特优越性能在这种背景下多足步行机器人的研究蓬勃发展起来。而仿生步行机器人的出现更加显示出步行机器人的优势。

多足步行机器人的运动轨迹是一系列离散的足印运动时只需要离散的点接触地面对环境的破坏程度也较小可以在可能到达的地面上选择最优的支撑点对崎岖地形的适应性强。正因为如此多足步行机器人对环境的破坏程度也较小。轮式和履带式机器人的则是一条条连续的辙迹。崎岖地形中往往含有岩石、泥土、沙子甚至峭壁和陡坡等障碍物可以稳定支撑机器人的连续路径十分有限,这意味着轮式和履带式机器人在这种地形中已经不适用。多足步行机器人的腿部具有多个自由度使运动的灵活性大大增强。它可以通过调节腿的长度保持身体水平也可以通过调节腿的伸展程度调整重心的位置因此不易翻倒稳定性更高。当然多足步行机器人也存在一些不足之处。比如为使腿部协调稳定运动从机械结构设计到控制系统算法都比较复杂相比自然界的节肢动物仿生多足步行机器人的机动性还有很大差距。我们借鉴了自然界昆虫的运动原理。足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。六足步行机器人的步态是多样的,其中三角步态是六足步行机器人实现步行的典型步态。“六足纲”昆虫步行时,一般不是六足同时直线前进,而是将三对足分成两组,以三角形支架结构交替前行。目前,大部分六足机器人采用了仿昆虫的结构,6条腿分布在身体的两侧,身体左侧的前、后足及右侧的中足为一组,右侧的前、后足和左侧的中足为另一组,分别组成两个三角形支架,依靠大腿前后划动实现支撑和摆动过程,这就是典型的三角步态行走法,机器人的髋关节在水平和垂直方向上运动。此时,B、D、F脚为摆动脚,A、C、E脚原地不动,只是支撑身体向前。由于身体重心低,不用协调Z向运动,容易稳定,所以这种行走方案能得到广泛运用。

以用舵机作为自由度关节的机器人为例:

18个舵机(机器人关节);

全身肢体结构;

动力(大电流放电电池如航模电池);

航模电池平衡充和充电器一个;

舵机控制板一个(至少18路);

还有一个作为自主控制或外部扩展的主控板(也就是各种单片机最小系统板和开发板)和配套下载模块。

简单来说,舵机控制板就是机器人的中枢神经,负责动作协调,另外的机器人主控就是大脑,负责处理外界信息,统一指挥,机器人扩展的传感器就是感官系统,负责接收外界信息。舵机控制板并不是机器人的核心,它只是负责控制舵机的模块而已,功能再多也只能让机器人跳跳舞啥的,想实现机器人智能化必须要添加另外的主控,也就是给机器人装个大脑,什么样的主控呢:大家学的51,AVR,ARM单片机都可以作为机器人的主控,再在主控上添加各种传感器模块就相当于给机器人安上了口鼻眼耳等等,这样便初步形成了机器人的智能化框架。科学家最新研制的ATHLETE(全地形六足地外探测器)机器人对于未来月球基地建设和发展充当着至关重要的角色。

美国宇航局指出,ATHLETE机器人顶部可放置15吨重的月球基地装置,它可以在月球上任意移动,能够抵达任何目的地。当在水平表面上时,ATHLETE机器人的车轮可加快行进速度;当遇到复杂的地形时,其灵活的6个爪子可以应付各种地形。

基于ATHLETE机器人的月球基地可直接由宇航员控制,也可由地球上的任务控制中心对其指挥。它更适合于成为一个自治型机器人月球基地,目前它正在接受测试。ATHLETE机器人采用了设计火星“勇气号”和“机遇号”的编程软件。

这个机器人移动的能量来源于太阳能电池板,最大行进速度可达到10公里/小时。虽然它的行进速度似乎有些慢,但能够完全胜任周长仅11000公里的月球表面勘测(地球的周长为40000公里)。宇航员能够生活在这种“游牧”型月球基地,随意到达月球任意表面。

有望变身月球“移动堡垒”

目前,美国宇航局工程正在加州帕萨迪纳(Pasadena)对两个ATHLETE机器人原型进行测试。这项奇特的月球基地是美国宇航局勘测月球的一个重大技术变革,宇航员将控制这种“游牧”型机器人,在更广阔的月球表面上进行勘测探索。据称,ATHLETE机器人对月球勘测带来更大的便利,在其爪子上安装摄像仪可以拍摄视频。

ATHLETE机器人不由地让人们联想起了科幻小说中的两种新奇装置,杰克·万斯在1964年所著的《杀人机器》中描述了一种步行堡垒:这种步行堡垒的外型是一个蜈蚣状怪物,76英尺长、12英尺高,这个机械装置由18段构成,每段装配着两只腿。

一旦美国宇航局将ATHLETE机器人部署在月球,并在未来的月球建设任务中投入使用,或许这种移动型月球基地将像一个“螃蟹堡垒”。这款机器人的移动方式,不由得联想到罗伯特·海因莱因1940年所写中篇小说《考文垂》(Coventry)中缓慢稳定移动的钢铁龟,它是由太阳能作为动力,爬行最高速度可达到6英里/小时。

林川看着前面的六足机器人道。

“但是每小时10公里的速度太慢了,用灰晶强化一下吧。”

说完林川将灰晶贴在六足机器人的表面,灰晶慢慢消失。

“这会速度总快了吧?”

林川到室外试了试。

“速度应该是50公里每小时,还不够。”

他将10块晶石贴入六足机器人。

他再次试了试。

“速度应该够120公里每小时了”

『加入书签,方便阅读』